BERT

Language in a (Search) Box: Grounding Language Learning in Real-World Human-Machine Interaction

We investigate grounded language learning through real-world data, by modelling a teacher-learner dynamics through the natural interactions occurring between users and search engines.

Cross-lingual Contextualized Topic Models with Zero-shot Learning

We introduce a novel topic modeling method that can make use of contextulized embeddings (e.g., BERT) to do zero-shot cross-lingual topic modeling.

Pre-training is a Hot Topic: Contextualized Document Embeddings Improve Topic Coherence

We introduce a novel topic modeling method that can provide highly coherent topics thanks to the use of contextualized embeddings.

FEEL-IT: Emotion and Sentiment Classification for the Italian Language

Sentiment analysis is a common task to understand people's reactions online. Still, we often need more nuanced information: is the post negative because the user is angry or because they are sad? An abundance of approaches has been introduced for …