Words with Consistent Diachronic Usage Patterns are Learned Earlier: A Computational Analysis Using Temporally Aligned Word Embeddings.

In this study, we use temporally aligned word embeddings and a large diachronic corpus of English to quantify language change in a data‐driven, scalable way, which is grounded in language use.

Language in a (Search) Box: Grounding Language Learning in Real-World Human-Machine Interaction

We investigate grounded language learning through real-world data, by modelling a teacher-learner dynamics through the natural interactions occurring between users and search engines.

Query2Prod2Vec: Grounded Word Embeddings for eCommerce

We present Query2Prod2Vec, a model that grounds lexical representations for product search in product embeddings: in our model, meaning is a mapping between words and a latent space of products in a digital shop. We leverage shopping sessions to learn the underlying space and use merchandising annotations to build lexical analogies for evaluation: our experiments show that our model is more accurate than known techniques from the NLP and IR literature. Finally, we stress the importance of data efficiency for product search outside of retail giants, and highlight how Query2Prod2Vec fits with practical constraints faced by most practitioners.